Rational External Rays of the Mandelbrot Set
نویسنده
چکیده
We give a new proof that all external rays of the Mandelbrot set at rational angles land, and of the relation between the external angle of such a ray and the dynamics at the landing point. Our proof is di erent from the original one, given by Douady and Hubbard and re ned by Lavaurs, in several ways: it replaces analytic arguments by combinatorial ones; it does not use complex analytic dependence of the polynomials with respect to parameters and can thus be made to apply for non-complex analytic parameter spaces; this proof is also technically simpler. Finally, we derive several corollaries about hyperbolic components of the Mandelbrot set. Along the way, we introduce partitions of dynamical and parameter planes which are of independent interest, and we interpret the Mandelbrot set as a symbolic parameter space of kneading sequences and internal addresses. Nous donnons une nouvelle d emonstration que tous les rayons externes a arguments rationels de l'ensemble Mandelbrot aboutissent, et nous montrons la relation entre l'argument externe d'un tel rayon et la dynamique au param etre o u le rayon aboutit. Notre d emonstration est di erente de l'originale, donn ee par Douady et Hubbard et elabor ee par Lavaurs, a plusieurs egards: elle remplace des arguments analytiques par des arguments combinatoires; elle n'utilise pas la d ependence analytique des polynômes par rapport au param etre et peut donc être appliqu ee aux espaces de param etres qui ne sont pas analytiques complexes; la d emonstration est aussi techniquement plus facile. Finalement, nous d emontrons quelques corollaires sur les composantes hyperboliques de l'ensemble Mandelbrot. En route, nous introduisons des partitions du plan dynamique et de l'espace des param etres qui sont int eressantes en elles-mêmes, et nous interpr etons l'ensemble Mandelbrot comme un espace de param etres symboliques contenant des kneading sequences et des adresses internes.
منابع مشابه
Rational Parameter Rays of the Mandelbrot Set
We give a new proof that all external rays of the Mandelbrot set at rational angles land, and of the relation between the external angle of such a ray and the dynamics at the landing point. Our proof is different from the original one, given by Douady and Hubbard and refined by Lavaurs, in several ways: it replaces analytic arguments by combinatorial ones; it does not use complex analytic depen...
متن کاملRational Parameter Rays of the Mandelbrot
| We give a new proof that all external rays of the Man-delbrot set at rational angles land, and of the relation between the external angle of such a ray and the dynamics at the landing point. Our proof is diierent from the original one, given by Douady and Hubbard and reened by Lavaurs, in several ways: it replaces analytic arguments by combinatorial ones; it does not use complex analytic depe...
متن کاملResearch Article Operating with External Arguments of Douady and Hubbard
The external arguments of the external rays theory of Douady and Hubbard is a valuable tool in order to analyze the Mandelbrot set, a typical case of discrete dynamical system used to study nonlinear phenomena. We suggest here a general method for the calculation of the external arguments of external rays landing at the hyperbolic components root points of the Mandelbrot set. Likewise, we prese...
متن کاملExternal Rays and the Real Slice of the Mandelbrot Set
This paper investigates the set of angles of the parameter rays which land on the real slice [−2, 1/4] of the Mandelbrot set. We prove that this set has zero length but Hausdorff dimension 1. We obtain the corresponding results for the tuned images of the real slice. Applications of these estimates in the study of critically non-recurrent real quadratics as well as biaccessible points of quadra...
متن کاملExternal arguments of Douady cauliflowers in the Mandelbrot set
Near to the cusp of a cardioid of the Mandelbrot set, except for the main cardioid, there is a sequence of baby Mandelbrot sets. Each baby Mandelbrot set is in the center of a Douady cauliflower, a decoration constituted by an infinity of minute Mandelbrot sets and Misiurewicz points linked by filaments. A Douady cauliflower appears to have a complicated structure, and how the external rays lan...
متن کامل